Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis.
نویسندگان
چکیده
Meiotic recombination is tightly regulated by cis- and trans-acting factors. Although DNA methylation and chromatin remodeling affect chromosome structure, their impact on meiotic recombination is not well understood. To study the effect of DNA methylation on the landscape of chromosomal recombination, we analyzed meiotic recombination in the decreased DNA methylation 1 (ddm1) mutant. DDM1 is a SWI2/SNF2-like chromatin-remodeling protein necessary for DNA methylation and heterochromatin maintenance in Arabidopsis thaliana. The rate of meiotic recombination between markers located in euchromatic regions was significantly higher in both heterozygous (DDM1/ddm1) and homozygous (ddm1/ddm1) backgrounds than in WT plants. The effect on recombination was similar for both male and female meiocytes. Contrary to expectations, ddm1 had no effect on the number of crossovers between markers in heterochromatic pericentric regions that underwent demethylation. These results are surprising, because the pericentromeric regions are hypermethylated and were expected to be the regions most affected by demethylation. Thus, DDM1 loss of function may trigger changes that enhance meiotic recombination in euchromatin regions but are not sufficient to induce the same events in heterochromatic segments. This work uncovers the repressive role of methylation on meiotic recombination in euchromatic regions and suggests that additional factors may have a role in controlling the suppression of recombination in heterochromatin.
منابع مشابه
DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis.
During meiosis, homologous chromosomes undergo crossover recombination, which is typically concentrated in narrow hot spots that are controlled by genetic and epigenetic information. Arabidopsis chromosomes are highly DNA methylated in the repetitive centromeres, which are also crossover-suppressed. Here we demonstrate that RNA-directed DNA methylation is sufficient to locally silence Arabidops...
متن کاملNo Detectable Effect of the DNA Methyltransferase DNMT2 on Drosophila Meiotic Recombination
Epigenetics is known to be involved in recombination initiation, but the effects of specific epigenetic marks like DNA methylation on recombination are relatively unknown. Studies in Arabidopsis and the fungus Ascobolus immersus suggest that DNA methylation may suppress recombination rates and/or alter its distribution across the genome; however, these patterns appear complex, and more direct i...
متن کاملArabidopsis thaliana telomeres exhibit euchromatic features
Telomere function is influenced by chromatin structure and organization, which usually involves epigenetic modifications. We describe here the chromatin structure of Arabidopsis thaliana telomeres. Based on the study of six different epigenetic marks we show that Arabidopsis telomeres exhibit euchromatic features. In contrast, subtelomeric regions and telomeric sequences present at interstitial...
متن کاملDNA methylation in maize: toto, i've a feeling we're not in Arabidopsis anymore.
The maize (Zea mays) genome is ;20-fold larger than the Arabidopsis thaliana genome (;2500 Mb versus 125 Mb) and packed with transposons and other repetitive sequences. DNA methylation affects the silencing of genes and transposons and may help plant cells manage their repetitive DNA (reviewed in Law and Jacobsen, 2010). In plants, different enzymes and pathways function in de novo DNA methylat...
متن کاملNatural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination.
During meiosis, homologous chromosomes undergo crossover recombination, which creates genetic diversity and balances homolog segregation. Despite these critical functions, crossover frequency varies extensively within and between species. Although natural crossover recombination modifier loci have been detected in plants, causal genes have remained elusive. Using natural Arabidopsis thaliana ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 16 شماره
صفحات -
تاریخ انتشار 2012